US009069708B2

a2 United States Patent 10) Patent No.: US 9,069,708 B2
Gill et al. 45) Date of Patent: Jun. 30, 2015
(54) METHOD AND SYSTEM FOR (56) References Cited
IMPLEMENTING CONSISTENCY GROUPS
WITH VIRTUAL MACHINES U.S. PATENT DOCUMENTS
. 6,549,992 Bl 4/2003 Armangau et al.
(71) Applicant: Nutanix, Inc., San Jose, CA (US) 7,529,897 Bl* 5/2009 Waldspurger et al. 711/162
8,117,410 B2* 2/2012 Luetal. 71162
3k
(72) Inventors: Binny Sher Gill, San Jose, CA (US); g’gg?’i% g% 1%83 glsﬁd;af Al s 71162
Brian Byrne, San Jose, CA (US); Mohit $850,130 Bl 9/2014 Aron et al.
Aron, Los Altos, CA (US) 2007/0136389 Al 6/2007 Bergant et al.
2010/0011178 Al 1/2010 Feathergill
. 2010/0076934 Al* 3/2010 Pershinetal. ... 707/640
2014/0068127 Al* 3/2014 Baronetal. 710/200
(*) Notice: Subject to any disclaimer, the term of this 2014/0096134 Al* 4/2014 Baraketal. ... 718/1
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 209 days. International Search Report and Written Opinion dated Jul. 15, 2014
for related PCT Patent Application No. PCT/US13/77865, 11 pages.
(21) Appl. No.: 13/728,403 Hitz, et al., “File System Design for an NFS File Server Appliance”,
Network Appliance, USENIX, San Francisco, CA, 1994, 23 pages.
(22) Filed: Dec. 27, 2012 Zhu, et. al.., “AV.oidjng the Disk B.ottleneclf i.n the Data Domain
Deduplication File System”, Usenix Association, FAST 2008, 6"
. L. USENIX Conference on File and Storage Technologies, 14 pages.
(65) Prior Publication Data EMC Corporation, “EMC Avamar Backup and Recovery for
US 2014/0189429 A1 Jul. 3. 2014 VMware Environments”, Applied Technology EMC, Aug. 2010, 18
v pages.
(51) Imt.ClL * cited by examiner
gzgﬁ ;Zgz (388281) Primary Examiner — Dieu-Minh Le
GO6F 9/455 52006.013 (74) Attorney, Agent, or Firm — Vista IP Law Group, LLP
(52) US.CL (57 ABSTRACT
CPC ... GO6F 11/1446 (2013.01); GO6F 9/45533 Disclosed is an approach for implementing disaster recovery
(2013.01); GOGF 9/45558 (2013.01); GO6F for virtual machines. Consistency groups are implemented
2009/45575 (2013.01) for virtual machines, where the consistency group link
(58) TField of Classification Search together two or more VMs. The consistency group inc.ludes
CPC e GOGF 11/1446 ~ any set of VMs which need to be managed on a consistent
USPC 714/2. 15. 18. 19. 20 basis in the event of a disaster recovery scenario.

See application file for complete search history.

Consistency Group 104a

36 Claims, 9 Drawing Sheets

Consistency Group 104b

US 9,069,708 B2

Sheet 1 of 9

Jun. 30, 2015

U.S. Patent

29¢i Q9ci B9Z |
/'y
€01 qeol BCOL
NN NA INA

a0l dnoisy Asuslsisuo)

I "©Old

qcol eZ0l
INA NA

ey L dnolg Aousisisuo)

US 9,069,708 B2

Sheet 2 of 9

Jun. 30, 2015

U.S. Patent

Q07 SYOO] 958y

907 S2OIN0S3I
Jo joysdeus 9eIoUdD)

A

¥0C
dno1s Aoudisisuod gim

POIBIOOSSE SOIINOSOL
uo $j00] 2amboy

A

707 dnoid Aoudisisuod
€ OJUI SN A 9ZIUe3I1()

¢ 'Old

US 9,069,708 B2

Sheet 3 of 9

Jun. 30, 2015

U.S. Patent

80¢ 1oysdeus wouy
BIED M SN A 91eniu]

90¢ SINA
yIim joysdeus 21e100ssy

A

$0¢ dnois
Koud)sisuoo 10j joysdeus
arenrdoadde Amuap]

A

70€ 2101521 0} dnoad
AoudIsISU0d AJNuap]

€ 'Old

US 9,069,708 B2

Sheet 4 of 9

Jun. 30, 2015

U.S. Patent

aqyel

COPON

qz04
N

ecolL
NA

eyl dnolo Aousisisuod

V¥ "Old

| SPON

US 9,069,708 B2

Sheet 5 of 9

Jun. 30, 2015

U.S. Patent

zoy ousdeus /o

“
-
N

ey} dnoig AoUS)SISUO)D

ZOPON 18PON

gy 'Old

US 9,069,708 B2

Sheet 6 of 9

Jun. 30, 2015

U.S. Patent

/

\ Zo¥ 1oysdeus

/

COPON

Oy 'Old

US 9,069,708 B2

/

./ 0vioysdeug \

{

H
i |
“ i
! z-oayZ1 Z-avel Z-evzi !

i
i |
! i
{

Sheet 7 of 9

Jun. 30, 2015

U.S. Patent

Z9PON

av "Olid

}9PON

US 9,069,708 B2

Sheet 8 of 9

Jun. 30, 2015

U.S. Patent

Z0¥ Joysdeug

Z-ey0l dnoio Aousisisuc)

COPON

3 "Old

| 8PON

US 9,069,708 B2

Sheet 9 of 9

Jun. 30, 2015

U.S. Patent

(4341
g4
7
Sy
SUONBOTUNTIITO)
Si¥l
yivi AN 41
SoBIA] LOYT Q0jIoN]
SUOTIEOTUNTIWO)) (8)105532014 vieQ
4 A A
A 4 A 4 A 4
S0F1 sng
4 A A
% A4 A4
011 60vL 80%1
a01A2(g WOd Arowapy
a8e101g e

S "OIA

557!

(434
201A2(7
gy

~

Hivl
Aeidsiq

00v1

US 9,069,708 B2

1
METHOD AND SYSTEM FOR
IMPLEMENTING CONSISTENCY GROUPS
WITH VIRTUAL MACHINES

FIELD

This disclosure concerns virtual machine and storage tech-
nology.

BACKGROUND

There are many kinds of architectures that can be used to
implement storage systems. Traditionally, storage for a com-
puting system is implemented using directly attached or inte-
grated storage, such as hard disk drives that are commonly
integrated into personal computers. Distributed storage archi-
tectures are also widely used, to allow a computer to access
and store data on networked based storage devices.

Modern computing systems may also implement storage in
the context of virtualization environments. A virtualization
environment contains one or more “virtual machines” or
“VMs”, which are software-based implementation of a
machine in an environment in which the hardware resources
of a real computer (e.g., CPU, memory, storage, etc.) are
virtualized or transformed into the underlying support for the
fully functional virtual machine that can run its own operating
system and applications on the underlying physical resources
justlike a real computer. By encapsulating an entire machine,
including CPU, memory, operating system, storage devices,
and network devices, a virtual machine is completely com-
patible with most standard operating systems, applications,
and device drivers. Virtualization allows one to run multiple
virtual machines on a single physical machine, with each
virtual machine sharing the resources of that one physical
computer across multiple environments. Different virtual
machines can run different operating systems and multiple
applications on the same physical computer.

One reason for the broad adoption of virtualization in mod-
ern business and computing environments is because of the
resource utilization advantages provided by virtual machines.
Without virtualization, if a physical machine is limited to a
single dedicated operating system, then during periods of
inactivity by the dedicated operating system the physical
machine is not utilized to perform useful work. This is waste-
ful and inefficient if there are users on other physical
machines which are currently waiting for computing
resources. To address this problem, virtualization allows mul-
tiple VMs to share the underlying physical resources so that
during periods of inactivity by one VM, other VMs can take
advantage of the resource availability to process workloads.
This can produce great efficiencies for the utilization of
physical devices, and can result in reduced redundancies and
better resource cost management.

Storage devices comprise one type of a physical resource
that can be managed and utilized in a virtualization environ-
ment. A set of one or more virtual disks may be implemented
to allow virtual storage of data on behalf of one or more
clients, such as client computers, systems, applications, or
virtual machines, where the virtual disk (or “vdisk™) is actu-
ally a logical representation of storage space compiled from
one or more physical underlying storage devices. When the
client issues a write request or read request in a virtualized
system, that request is actually issued to a virtualized storage
device.

The topic addressed by the present disclosure pertains to
disaster recovery scenarios involving VMs. Modern organi-
zations have come to the realization that processes and pro-

10

15

20

25

30

35

40

45

50

55

60

65

2

cedures need to be put into place to address the possibility of
disasters and failures, both natural or human-induced, that
may affect the computing equipment used by the organiza-
tion. As computing and information technology systems have
become increasingly critical to the operations of an organi-
zation, the importance of ensuring the continued operation of
those systems has increased.

SUMMARY

Embodiments of the present invention provide an
improved approach for implementing disaster recovery for
VMs. In some embodiments of the invention, consistency
groups are implemented for virtual machines, where the con-
sistency group links together two or more VMs. The consis-
tency group includes any set of VMs which need to be man-
aged on a consistent basis in the event of a disaster recovery
scenario. In some embodiments, the consistency groups are
“non-intrusive” to the VM or applications on the VM, e.g., in
which no special hooks are required in the VM/application to
ensure that a collection of VMs can be snapshotted such that
they are consistent.

Further details of aspects, objects, and advantages of the
invention are described below in the detailed description,
drawings, and claims. Both the foregoing general description
and the following detailed description are exemplary and
explanatory, and are not intended to be limiting as to the scope
of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The drawings illustrate the design and utility of embodi-
ments of the present invention, in which similar elements are
referred to by common reference numerals. In order to better
appreciate the advantages and objects of embodiments of the
invention, reference should be made to the accompanying
drawings. However, the drawings depict only certain embodi-
ments of the invention, and should not be taken as limiting the
scope of the invention.

FIG. 1 illustrates VM-based consistency groups according
to some embodiments of the invention.

FIG. 2 shows a flowchart of an approach for VM-based
consistency groups according to some embodiments of the
invention.

FIG. 3 shows a flowchart of an approach for recovering
VM-based consistency groups according to some embodi-
ments of the invention.

FIGS. 4A-E illustrate implementation of VM-based con-
sistency groups according to some embodiments of the inven-
tion.

FIG. 5 is a block diagram of a computing system suitable
for implementing an embodiment of the present invention.

DETAILED DESCRIPTION OF THE
EMBODIMENTS OF THE INVENTION

Embodiments of the present invention provide an
improved approach for implementing disaster recovery for
VMs. In some embodiments of the invention, consistency
groups are implemented for virtual machines, where the con-
sistency group links together two or more VMs. The consis-
tency group includes any set of VMs which need to be man-
aged on a consistent basis in the event of a disaster recovery
scenario.

FIG. 1 illustrates example consistency groups 104a and
1045 according to some embodiments of the invention. Each
consistency group 1044 and 1045 includes a group of VMs

US 9,069,708 B2

3

that need to be maintained to be crash consistent. This means
that the state of the VMs in a respective consistency group
must be maintained on a consistent basis across the member
VMs after disaster recovery has occurred. The VMs in the
consistency group are therefore snapshotted at the same point
in time as if the snapshots occurred instantaneously.

There may be any number of VM in a consistency group as
required to maintain consistency across sets of related VMs.
As illustratively shown in the figure, consistency group 104a
includes two VMs 102a and 1025 and consistency group 1045
includes three VMs 1034, 1035, and 103c.

Each VM is associated with a set of resources that include
information about the state of the VM. These resources
include, for example, files associated with the VM such as log
files, configuration files, and data files. The VMs may be
associated with resources dedicated to that VM. For example,
VM 103a is associated with dedicated resources 126a, VM
1035 is associated with dedicated resources 1265, and VM
103c¢ is associated with dedicated resources 126¢. The VMs
may also be associated with linked resources. For example,
VM 102a and VM 1026 are both associated with a linked
resource 1245 (e.g., a linked file). These VMs 102a and 1026
are also associated with dedicated resources 124a and 124c,
respectively.

According to some embodiments, the invention is imple-
mented by ensuring that the state of the resources for VMs
within the same consistency group are captured and main-
tained on a consistent basis.

FIG. 2 shows a flowchart of an approach to capture the state
of resources for consistency groups according to some
embodiments of the invention. At 202, some or all of the VMs
in the system are organized into consistency groups. As noted
above, there may be multiple consistency groups in the sys-
tem, where each consistency group may include any number
of VM.

Any suitable basis can be used to decide upon the members
of'a consistency group. As just one example, the consistency
group can be organized to provide for data consistency across
multiple VMs. This ensures, for example, that data dependen-
cies that exist across multiple VMs do not turn into inconsis-
tencies after a disaster recovery. As another example, there
may be recognition that a set of multiple VMs pertain to
closely related users, data, hardware, and/or subject matter,
such that the VMs should be grouped together into a common
consistency group.

A set of metadata is maintained in the system to track the
membership of consistency groups. In some embodiments,
the consistency group is structured as a container object that
includes the identifier of the VMs and/or VM resources that
are mapped to the consistency group.

At 204, locks are acquired on the resources associated with
the VMs of the consistency group. Lock management is a
common approach that is used to synchronize accesses to
shared resources. As noted above, the resource corresponds to
any object pertaining to a VM to which shared access must be
controlled. For example, the resource can be a file, a record,
an area of shared memory, or anything else that can be shared
by multiple VMs and/or entities in the system.

There are potentially many types of locks that may poten-
tially be taken on the resource. In general, the lock should be
of'a type that precludes any modification to the resource while
the system is in the midst of capturing the state of the
resource. Examples of locks include, e.g., exclusive locks,
protected read locks, and shared locks.

Once locks have been acquired on all of the appropriate
resource, then at 206, a snapshot is taken of those resources.
The snapshot is a recording of the state of the resource at a

10

15

20

25

30

35

40

45

50

55

60

65

4

given moment in time. In effect, a synchronized snapshot is
generated for every resource associated with the VMs in a
consistency group that would be required in a disaster recov-
ery situation to maintain the consistency across those mul-
tiple VMs in the same group.

The snapshot is then stored in a storage location that is
predicted or anticipated to not share a common failure modal-
ity with the members of the consistency group. For example,
a well-recognized failure mode in disaster scenarios is the
failure of a power supply/source. Therefore, with recognition
of this possible failure scenario, it would make sense for the
snapshot(s) of VMs for nodes attached to a first power supply/
source to be stored in a storage location that is associated with
a second power supply/source. Once the snapshots have been
appropriated captured and are confirmed to be safely stored,
the locks can then be released at 208. In some embodiments,
the locks on the resource are released after the resource has
been snapshotted, such as where the snapshotted resource is
kept aside to perform fault-tolerance (e.g., replication) with-
out blocking further writes to the resource.

Any suitable approach can be used to take a snapshot of a
resource. For example, consider the situation when the appli-
cation and/or the VM has either in-memory or on-disk state
that needs to be snapshotted. The in-memory and/or on-disk
data for the application/VM is stored in a set of one or more
virtualized storage components. A copy of the data within the
virtualized storage components is made and/or identified to
perform the snapshot.

To explain, consider if the resources for the application/
VM are stored as virtual disks or “vdisk”, which is a logical
representation of storage space compiled from one or more
physical underlying storage devices. A file comprises data
within one or more vdisks that are associated with the file.
Metadata may be used to map the resources to the underlying
physical storage devices. More information about an exem-
plary approach to implement vdisks and its associated meta-
data is described in co-pending U.S. application Ser. Nos.
13/207,345 and 13/207,357, both filed on Aug. 10, 2011,
which are hereby incorporated by reference in their entirety.

When taking a snapshot, a copy is made and/or identified of
the vdisks associated with a resource. Any suitable can be
taken to make this type of copy of the vdisks. In some embodi-
ments, a copy-on-write approach is taken to make a copy of a
vdisk when a change is made to that vdisk, where the previous
version of the vdisk is still maintained. Both the previous and
new version of the vdisk are associated with identifier num-
bers (e.g., “epoch” numbers) that can be used to distinguish
between the different stored versions of the vdisks. For a
given consistency group, snapshots for the vdisks associated
with that consistency group would be taken at the same time,
and therefore would be associated with the same epoch num-
ber.

In this way, any application can be snapshotted on a con-
sistent basis, by implementing the application using virtual-
ized storage (e.g., using the approach described in co-pending
U.S. application Ser. Nos. 13/207,345 and 13/207,357) and
then snapshotting the virtual storage components associated
with the application. This permits the consistency groups to
be established in a way that is non-intrusive to the application/
VM, and in which no special hooks are required in the
VM/application to ensure that a collection of VMs can be
snapshotted such that they are consistent.

This approach also permits any application, even one with-
out a native capacity for snapshots, to implement consistency
groups. To explain, consider an application that does not
natively provide a capacity to implement snapshots, such as
most modern non-database and/or non-disaster recovery

US 9,069,708 B2

5

applications. Most applications that are not themselves data-
base management systems (DBMSs) or failure/disaster sys-
tems only offer rudimentary capabilities to handle data, with-
out even the concept of point-in-time snapshots. With the
present invention, the underlying storage for these applica-
tions is implemented using a virtualization system, e.g.,
where the application/application node is virtualized as a
virtual machine and/or where the application uses a virtual-
ized storage infrastructure having virtual machines to manage
its data. Using the above-described approach, consistent
snapshots can then be taken of the data associated with the
virtual machines that correspond to the application, even if
the application code itself does not provide the ability to
implement snapshots.

The actions of 204, 206, and 208 can be taken at any
appropriate time periods, e.g., on a regular basis as estab-
lished by a system administrator taking into account the needs
to maintain up-to-date snapshots while balancing their costs.
The snapshots can also be taken on an ad hoc basis at other
time periods as well.

FIG. 3 shows a flowchart of an approach to restore the state
of resources for VMs in a consistency groups after a disaster
according to some embodiments of the invention.

At 302, identification is made of a consistency group that
needs to be restored to implement disaster recovery. This may
occur, for example, upon recognition of a disaster that has
occurred which has brought down some or all of the VMs
within a consistency group.

At 304, the appropriate snapshot(s) are identified for the
consistency group to be restored. In some embodiments, the
snapshots are stored within a hidden directory. The hidden
directory is searched for the snapshot(s) of interest or the
consistency group/VMs to be restored.

At 306, the identified snapshot(s) are associated with the
VMs being restored to implement disaster recovery. For
example, if the snapshots are stored in a hidden directory, then
this step will move/copy the snapshots into a public
namespace to be associated with the VMs that are being
restored.

Thereafter, at 308, the VMs in the consistency group being
restored are brought up using the data from the snapshot(s).
Since the VM are restored from snapshot(s) taken at a con-
sistent point in time, this means that the VMs within the
consistency group will be restored and brought up with an
inherent consistency in their restored states.

FIGS. 4A-E provide an illustrative example of the above-
described approach to implement consistency groups. FIG.
4A shows a node 1 that is running VM 102a and VM 1025,
both of which are members of the same consistency group
104a. These VMs 102a and 1026 are associated with
resources 124a, 124b, and 124¢. As used herein, the term
“node” refers to any appropriate computing entity and/or
location, including without limitation, a machine, site, clus-
ter, and/or system.

As illustrated in FIG. 4B, a snapshot 402 is taken of the
resources 124a,124b, and 124¢. The snapshot 402 is taken to
preserve a consistent state of 124a, 124b, and 124c¢ at a
specified moment in time.

Thereafter, as shown in FIG. 4C, a disaster occurs that
results in failure of VMs 102a and 1024. Such a disaster may
occur, for example, due to a hardware problem that takes
down node 1. As a result, VMs 1024a and 1025 are no longer
accessible to the user.

Disaster recovery is then pursued to bring VMs 102a and
1025 back up. Since these two VMs are members for the same
consistency group 104a, they must be restored in a manner

15

40

45

50

55

6

that preserves the consistency of their restored states. It is
assumed that the VMs will be restored using node 2 during the
disaster recovery process.

FIG. 4D illustrates identification of snapshot 402 as the
appropriate snapshot to implement the restoration of the
VMs. The snapshot 402 is associated with a restored set of
resources 124a-2, 1245-2, and 124¢-2 for the restored VMs
102a-2 and 1025-2. As illustrated in FIG. 4E, when these
VMs 102a-2 and 1026-2 are brought up, the state of the
resources 124a-2, 124b-2, and 124¢-2 that are accessed per-
mit the VMs 1024-2 and 1025-2 to be restored to a consistent
state from the time that the snapshot 402 was captured. This
means that the VMs 102a-2 and 1025-2 within the restored
consistency group 104a-2 has been restored and brought up
with an inherent consistency in their restored states.

Therefore, what has been described above is an improved
approach to implement disaster recovery for VMs, where
consistency groups are provided to link together two or more
VMs for disaster recovery purposes.

System Architecture

FIG. 5 is a block diagram of an illustrative computing
system 1400 suitable for implementing an embodiment of the
present invention. Computer system 1400 includes a bus 1406
or other communication mechanism for communicating
information, which interconnects subsystems and devices,
such as processor 1407, system memory 1408 (e.g., RAM),
static storage device 1409 (e.g., ROM), disk drive 1410 (e.g.,
magnetic or optical), communication interface 1414 (e.g.,
modem or Ethernet card), display 1411 (e.g., CRT or LCD),
input device 1412 (e.g., keyboard), and cursor control.

According to one embodiment of the invention, computer
system 1400 performs specific operations by processor 1407
executing one or more sequences of one or more instructions
contained in system memory 1408. Such instructions may be
read into system memory 1408 from another computer read-
able/usable medium, such as static storage device 1409 or
disk drive 1410. In alternative embodiments, hard-wired cir-
cuitry may be used in place of or in combination with soft-
ware instructions to implement the invention. Thus, embodi-
ments of the invention are not limited to any specific
combination of hardware circuitry and/or software. In one
embodiment, the term “logic” shall mean any combination of
software or hardware that is used to implement all or part of
the invention.

The term “computer readable medium” or “computer
usable medium” as used herein refers to any medium that
participates in providing instructions to processor 1407 for
execution. Such a medium may take many forms, including
but not limited to, non-volatile media and volatile media.
Non-volatile media includes, for example, optical or mag-
netic disks, such as disk drive 1410. Volatile media includes
dynamic memory, such as system memory 1408.

Common forms of computer readable media includes, for
example, floppy disk, flexible disk, hard disk, magnetic tape,
any other magnetic medium, CD-ROM, any other optical
medium, punch cards, paper tape, any other physical medium
with patterns of holes, RAM, PROM, EPROM, FLASH-
EPROM, any other memory chip or cartridge, or any other
medium from which a computer can read.

In an embodiment of the invention, execution of the
sequences of instructions to practice the invention is per-
formed by a single computer system 1400. According to other
embodiments of the invention, two or more computer systems
1400 coupled by communication link 1415 (e.g., LAN,
PTSN, or wireless network) may perform the sequence of
instructions required to practice the invention in coordination
with one another.

US 9,069,708 B2

7

Computer system 1400 may transmit and receive mes-
sages, data, and instructions, including program, i.e., appli-
cation code, through communication link 1415 and commu-
nication interface 1414. Received program code may be
executed by processor 1407 as it is received, and/or stored in
disk drive 1410, or other non-volatile storage for later execu-
tion. Data may be accessed/stored in a database 1432 on
medium 1431 through a data interface 1433.
In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention. For example, the
above-described process flows are described with reference
to a particular ordering of process actions. However, the
ordering of many of the described process actions may be
changed without affecting the scope or operation of the inven-
tion. The specification and drawings are, accordingly, to be
regarded in an illustrative rather than restrictive sense.
What is claimed is:
1. A method for implementing a consistency group, com-
prising:
locking resources associated with the members of a con-
sistency group, wherein the members of the consistency
group comprises a group of related virtual machines;

generating a snapshot of the resources associated with the
members of the consistency group; and

releasing locks on the resource after the snapshot has been

generated.

2. The method of claim 1, in which an application associ-
ated with the resources does not have a native functionality to
generate the snapshot.

3. The method of claim 1, in which an application associ-
ated with the resources is not modified to include functional-
ity to implement the consistency group.

4. The method of claim 1, in which the snapshot comprises
a copy of one or more virtual disks associated with the
resources.

5. The method of claim 4, in which the snapshot comprises
identification of one or more identifier numbers associated
with the copy of the one or more virtual disks associated with
the resources.

6. The method of claim 4, in which copy-on-write func-
tionality is used to create the copy of the one or more virtual
disks associated with the resources, wherein the one or more
identifier numbers is incremented upon making the copy.

7. The method of claim 1, in which metadata is maintained
to track membership in the consistency group.

8. The method of claim 1, in which the snapshot is gener-
ated at a time period using at least one of: a regular basis or an
ad hoc basis.

9. The method of claim 1, further comprising:

identifying the consistency group to restore;

identifying the snapshot for the consistency group; and

initiating the group of related virtual machines using the

snapshot.

10. The method of claim 9, in which the snapshot is asso-
ciated with the group of related virtual machines.

11. The method of claim 1, in which disaster recovery is
performed.

12. A system for implementing a consistency group, com-
prising:

a processor;

a memory for holding programmable code; and

wherein the programmable code includes instructions for

locking resources associated with the members of a con-
sistency group, wherein the members of the consistency

5

10

15

20

25

30

35

40

45

55

60

8

group comprises a group of related virtual machines;
generating a snapshot of the resources associated with
the members of the consistency group; and releasing
locks on the resource after the snapshot has been gener-
ated.
13. The system of claim 12, in which an application asso-
ciated with the resources does not have a native functionality
to generate the snapshot.
14. The system of claim 12, in which an application asso-
ciated with the resources is not modified to include function-
ality to implement the consistency group.
15. The system of claim 12, in which the snapshot com-
prises a copy of one or more virtual disks associated with the
resources.
16. The system of claim 15, in which the snapshot com-
prises identification of one or more identifier numbers asso-
ciated with the copy of the one or more virtual disks associ-
ated with the resources.
17. The system of claim 15, in which copy-on-write func-
tionality is used to create the copy of the one or more virtual
disks associated with the resources, wherein the one or more
identifier numbers is incremented upon making the copy.
18. The system of claim 12, in which metadata is main-
tained to track membership in the consistency group.
19. The system of claim 12, in which the snapshot is gen-
erated at a time period using at least one of: a regular basis or
an ad hoc basis.
20. The system of claim 12, further comprising instructions
for identifying the consistency group to restore, identifying
the snapshot for the consistency group, and initiating the
group of related virtual machines using the snapshot.
21. The system of claim 20, in which the snapshot is asso-
ciated with the group of related virtual machines.
22. The system of claim 12, in which the system performs
disaster recovery.
23. A non-transitory computer program product embodied
on a computer usable medium, the computer readable
medium having stored thereon a sequence of instructions
which, when executed by a processor causes the processor to
execute a method for implementing a consistency group, the
method comprising:
locking resources associated with the members of a con-
sistency group, wherein the members of the consistency
group comprises a group of related virtual machines;

generating a snapshot of the resources associated with the
members of the consistency group; and

releasing locks on the resource after the snapshot has been

generated.

24. The computer program product of claim 23, in which an
application associated with the resources does not have a
native functionality to generate the snapshot.

25. The computer program product of claim 23, in which an
application associated with the resources is not modified to
include functionality to implement the consistency group.

26. The computer program product of claim 23, in which
the snapshot comprises a copy of one or more virtual disks
associated with the resources.

27. The computer program product of claim 26, in which
the snapshot comprises identification of one or more identi-
fier numbers associated with the copy of the one or more
virtual disks associated with the resources.

28. The computer program product of claim 26, in which
copy-on-write functionality is used to create the copy of the
one or more virtual disks associated with the resources,
wherein the one or more identifier numbers is incremented
upon making the copy.

US 9,069,708 B2

9

29. The computer program product of claim 23, in which
metadata is maintained to track membership in the consis-
tency group.

30. The computer program product of claim 23, in which
the snapshot is generated at a time period using at least one of:
a regular basis or an ad hoc basis.

31. The computer program product of claim 23, further
comprising:

identifying the consistency group to restore;

identifying the snapshot for the consistency group; and

initiating the group of related virtual machines using the

snapshot.

32. The computer program product of claim 31, in which
the snapshot is associated with the group of related virtual
machines.

33. The computer program product of claim 23, in which
disaster recovery is performed.

34. A method for restoring a consistency group, compris-
ing:

identifying a consistency group to restore to implement

disaster recovery, wherein the consistency group com-
prises a group of related virtual machines;

identifying a snapshot associated with the consistency

group; and

using the snapshot to bring up the virtual machines in the

consistency group in a consistent manner.

10

15

10

35. A system for restoring a consistency group, compris-
ing:

a processor;

a memory for holding programmable code; and

wherein the programmable code includes instructions for

identifying a consistency group to restore to implement
disaster recovery, wherein the consistency group com-
prises a group of related virtual machines; identifying a
snapshot associated with the consistency group; and
using the snapshot to bring up the virtual machines in the
consistency group in a consistent manner.

36. A non-transitory computer program product embodied
on a computer usable medium, the computer readable
medium having stored thereon a sequence of instructions
which, when executed by a processor causes the processor to
execute a method for restoring a consistency group, the
method comprising:

identifying a consistency group to restore to implement

disaster recovery, wherein the consistency group com-
prises a group of related virtual machines;

identifying a snapshot associated with the consistency

group; and

using the snapshot to bring up the virtual machines in the

consistency group in a consistent manner.

#* #* #* #* #*

